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Context: Intrusion Detection

• Two approaches:
• Network based Intrusion Detection System

• Unable to detect some attacks (e.g., a local privilege escalation)

• Host-based Intrusion Detection System
• Rely on data sent by the OS to detect intrusions

• How can we detect intrusions when the OS is compromised?
• Intruders can send false data to the IDS

• We propose to use virtualization extensions
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Context: Virtualization

• Virtualization extension:
• Allow a processor to run multiple Virtual 

Machines

• A software component named hypervisor 
manages those VMs

• Advantages:
• Each VM is isolated from others

• Even if an attacker can control one VM, 
the hypervisor is still safe

• The IDS can be placed in the hypervisor
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Context: Semantic gap

• Semantic gap: how can we retrieve data from the VM memory
• How are they stored?

• E.g., The format of the structures used by the kernel

• Where are they stored?
• Virtual and physical addresses

• When are they updated?
• Some changes are legitimate

• Example: processes list
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Example: Where are data stored?

• Address Translation mechanism 
in two steps
• One controlled by the VM

• One controlled by the hypervisor

• The IDS needs to do the whole 
process to retrieve data
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How to obtain data ?

• Development of specific tool for each OS
• Fastidious to develop

• Learning based approaches
• May fail to detect new behaviors

• Cloning of the VM
• Time consuming process

• Communication with the VM
• An intruder can send incorrect data to the hypervisor
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Interesting approach: Hyperupcalls

• VM can send eBPF programs to the hypervisor
• The hypervisor can execute those programs

• They allow the hypervisor to get information about resources used by the VM

• Allow a better use of hardware resources by the hypervisor

• Drawbacks
• Not designed for security purposes

• Programs can be sent at any time by the VM

• An attacker can change the memory structure layout to disable those 
programs

Michael Wei et Nadav Amit. « Leveraging Hyperupcalls To Bridge The Semantic Gap: An Application Perspective ». 
IEEE Data Eng. Bull. (2019).
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Our objective

• Create a language dedicated to 
VM Introspection
• VMs send some programs

• Hypervisor compiles and execute 
those programs

• They can raise an alert when an 
attack is detected
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Implementation

• Hypervisor modification
• Read/Write detection in VM memory

• Detection of the execution of an instruction at a given address

• Hypercall allowing a VM to send programs written in our language

• Small interpreter running the programs sent by the VM (still WIP)
• Can be used to detect two rootkits we have implemented

• Creation of different rootkits
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Rootkits

1. Syscall table modification

2. Virtual file system modification

3. Modification of structures pid and task_struct

4. Modification of structures cred
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Rootkits

• Syscall table modification
• A list of functions corresponding to every system call is stored in the syscall 
table

• getdents is called to list the existing processes

• Attack: change of a function pointer in the syscall table

• Detection: the syscall table should not be changed after boot
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Rootkits

• Syscall table modification
• A list of functions corresponding to every system call is stored in the syscall 
table

• getdents is called to list the existing processes

• Attack: change of a function pointer in the syscall table

• Detection: the syscall table should not be changed after boot
Some other structures may also be changed by the attacker
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Rootkits

• Modification of dynamic structure
• pid: structure used by iterate_shared to iterate on processes

• May be created or destroyed dynamically (e.g., when a new process is created)

• cred: store the credentials and permissions of a given process
• May be changed dynamically (e.g., setreuid syscall)

• Attack: illegal changes of those structures

• Detection: needs to differentiate legitimate and illegitimate changes
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Language

• Currently WIP

• Programs are sent by the VM and interpreted by the hypervisor

• List of useable events:

• Read/write in memory

• Write in a system register

• Call of a given function in the VM kernel
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Language

x ∈ Var

m ∈ MapId

k ∈ Key

u ∈ Uint64

f ∈ FunName ::= string

r ∈ Reg ::= pc | reg(i)

e ∈ Expr ::= cst u | var x
 | binop bop e1 e2 | unop uop e
 | lookup m k
 | VMreg r | VMmem α

| event

k ∈ Kind ::= Intermediate | Virtual

α ∈ Addr ::= Kind × Expr

ι ∈ Range ::= Kind × Expr × Expr

a ∈ Access ::= R | W

ev ∈ Event ::= mem access a ι
| reg access r

 | break α

i ∈ Instr ::= skip | i1; i2 | x := e | loop n i
 | if e then i1 else i2
 | delete m k | update m k e
 | alert
 | x ← add listener ev f
 | remove listener x

c ∈ Cmd ::= kernel pagetable u
 | m := create map
 | fundef f i
 | dofun f
 | stop trusting me
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Security constraints

• Sending programs
• An attacker could try to send its programs

• Countermeasure
• The VM is initially safe

• The VM sends a specific signal after the send of its last program

• Any program send after that signal will be ignored by the hypervisor
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Security constraints

• Input manipulation
• An attacker can change programs inputs (VM Memory)

• Ex: they can create new processes, …

• It can try to use bugs in existing programs to compromise the whole hypervisor

• Countermeasure
• Memory accesses are limited to maps (R/W) and VM memory (R)

• No infinite loops

• Raise an alert if the number of registered events for a VM reaches a threshold

• Protect the structures and registers used by the address translation mechanism
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Program example

main() {

on_call(sys_fork, protect_task_struct)

on_call(sys_exit, remove_task_protections)

}

protect_task_struct() {

task = find_task_struct()

handler = on_write(task.cred, sizeof(struct cred), protect_cred)

store(process_map, task.pid, handler)

}

remove_task_protections() {

task = find_task_struct()

disable(get(process_map, task.pid)) 

}
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Conclusion & future work

• Work done
• Modification of a hypervisor to detect events in a VM
• Hypercall allowing a VM to send programs to the hypervisor
• Small interpreter int the hypervisor allowing to detect some rootkits in a VM

• Future work
• Continue the development of a simple interpreter (then a compiler)

• They should ensure than security constrains are respected

• Create programs in our language to detect the four implemented rootkits
• Benchmark the performances of an introspected VM
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