
Toward the design and implementation of
a language dedicated to Virtual Machine

Introspection
Lionel HEMMERLE, Guillaume HIET, Frédéric TRONEL, Pierre WILKE,

Jean-Christophe PREVOTET

2

Context: Intrusion Detection

• Two approaches:
• Network based Intrusion Detection System

• Unable to detect some attacks (e.g., a local privilege escalation)

• Host-based Intrusion Detection System
• Rely on data sent by the OS to detect intrusions

• How can we detect intrusions when the OS is compromised?
• Intruders can send false data to the IDS

• We propose to use virtualization extensions

3

Context: Virtualization

• Virtualization extension:
• Allow a processor to run multiple Virtual

Machines

• A software component named hypervisor
manages those VMs

• Advantages:
• Each VM is isolated from others

• Even if an attacker can control one VM,
the hypervisor is still safe

• The IDS can be placed in the hypervisor

4

Context: Semantic gap

• Semantic gap: how can we retrieve data from the VM memory
• How are they stored?

• E.g., The format of the structures used by the kernel

• Where are they stored?
• Virtual and physical addresses

• When are they updated?
• Some changes are legitimate

• Example: processes list

5

Example: Where are data stored?

• Address Translation mechanism
in two steps
• One controlled by the VM

• One controlled by the hypervisor

• The IDS needs to do the whole
process to retrieve data

6

How to obtain data ?

• Development of specific tool for each OS
• Fastidious to develop

• Learning based approaches
• May fail to detect new behaviors

• Cloning of the VM
• Time consuming process

• Communication with the VM
• An intruder can send incorrect data to the hypervisor

7

Interesting approach: Hyperupcalls

• VM can send eBPF programs to the hypervisor
• The hypervisor can execute those programs

• They allow the hypervisor to get information about resources used by the VM

• Allow a better use of hardware resources by the hypervisor

• Drawbacks
• Not designed for security purposes

• Programs can be sent at any time by the VM

• An attacker can change the memory structure layout to disable those
programs

Michael Wei et Nadav Amit. « Leveraging Hyperupcalls To Bridge The Semantic Gap: An Application Perspective ».
IEEE Data Eng. Bull. (2019).

8

Our objective

• Create a language dedicated to
VM Introspection
• VMs send some programs

• Hypervisor compiles and execute
those programs

• They can raise an alert when an
attack is detected

9

Implementation

• Hypervisor modification
• Read/Write detection in VM memory

• Detection of the execution of an instruction at a given address

• Hypercall allowing a VM to send programs written in our language

• Small interpreter running the programs sent by the VM (still WIP)
• Can be used to detect two rootkits we have implemented

• Creation of different rootkits

10

Rootkits

1. Syscall table modification

2. Virtual file system modification

3. Modification of structures pid and task_struct

4. Modification of structures cred

11

Rootkits

• Syscall table modification
• A list of functions corresponding to every system call is stored in the syscall
table

• getdents is called to list the existing processes

• Attack: change of a function pointer in the syscall table

• Detection: the syscall table should not be changed after boot

12

Rootkits

• Syscall table modification
• A list of functions corresponding to every system call is stored in the syscall
table

• getdents is called to list the existing processes

• Attack: change of a function pointer in the syscall table

• Detection: the syscall table should not be changed after boot
Some other structures may also be changed by the attacker

13

Rootkits

• Modification of dynamic structure
• pid: structure used by iterate_shared to iterate on processes

• May be created or destroyed dynamically (e.g., when a new process is created)

• cred: store the credentials and permissions of a given process
• May be changed dynamically (e.g., setreuid syscall)

• Attack: illegal changes of those structures

• Detection: needs to differentiate legitimate and illegitimate changes

14

Language

• Currently WIP

• Programs are sent by the VM and interpreted by the hypervisor

• List of useable events:

• Read/write in memory

• Write in a system register

• Call of a given function in the VM kernel

15

Language

x ∈ Var

m ∈ MapId

k ∈ Key

u ∈ Uint64

f ∈ FunName ::= string

r ∈ Reg ::= pc | reg(i)

e ∈ Expr ::= cst u | var x
 | binop bop e1 e2 | unop uop e
 | lookup m k
 | VMreg r | VMmem α

| event

k ∈ Kind ::= Intermediate | Virtual

α ∈ Addr ::= Kind × Expr

ι ∈ Range ::= Kind × Expr × Expr

a ∈ Access ::= R | W

ev ∈ Event ::= mem access a ι
| reg access r

 | break α

i ∈ Instr ::= skip | i1; i2 | x := e | loop n i
 | if e then i1 else i2
 | delete m k | update m k e
 | alert
 | x ← add listener ev f
 | remove listener x

c ∈ Cmd ::= kernel pagetable u
 | m := create map
 | fundef f i
 | dofun f
 | stop trusting me

16

Security constraints

• Sending programs
• An attacker could try to send its programs

• Countermeasure
• The VM is initially safe

• The VM sends a specific signal after the send of its last program

• Any program send after that signal will be ignored by the hypervisor

17

Security constraints

• Input manipulation
• An attacker can change programs inputs (VM Memory)

• Ex: they can create new processes, …

• It can try to use bugs in existing programs to compromise the whole hypervisor

• Countermeasure
• Memory accesses are limited to maps (R/W) and VM memory (R)

• No infinite loops

• Raise an alert if the number of registered events for a VM reaches a threshold

• Protect the structures and registers used by the address translation mechanism

18

Program example

main() {

on_call(sys_fork, protect_task_struct)

on_call(sys_exit, remove_task_protections)

}

protect_task_struct() {

task = find_task_struct()

handler = on_write(task.cred, sizeof(struct cred), protect_cred)

store(process_map, task.pid, handler)

}

remove_task_protections() {

task = find_task_struct()

disable(get(process_map, task.pid))

}

19

Conclusion & future work

• Work done
• Modification of a hypervisor to detect events in a VM
• Hypercall allowing a VM to send programs to the hypervisor
• Small interpreter int the hypervisor allowing to detect some rootkits in a VM

• Future work
• Continue the development of a simple interpreter (then a compiler)

• They should ensure than security constrains are respected

• Create programs in our language to detect the four implemented rootkits
• Benchmark the performances of an introspected VM

	Diapositive 1 Toward the design and implementation of a language dedicated to Virtual Machine Introspection
	Diapositive 2 Context: Intrusion Detection
	Diapositive 3 Context: Virtualization
	Diapositive 4 Context: Semantic gap
	Diapositive 5 Example: Where are data stored?
	Diapositive 6 How to obtain data ?
	Diapositive 7 Interesting approach: Hyperupcalls
	Diapositive 8 Our objective
	Diapositive 9 Implementation
	Diapositive 10 Rootkits
	Diapositive 11 Rootkits
	Diapositive 12 Rootkits
	Diapositive 13 Rootkits
	Diapositive 14 Language
	Diapositive 15 Language
	Diapositive 16 Security constraints
	Diapositive 17 Security constraints
	Diapositive 18 Program example
	Diapositive 19 Conclusion & future work

